Inherent imprecisions present in the basic parameters of cellular honeycomb cores, such as the cell angle, the material properties, and the geometric parameters, need to be considered in the analysis and design to meet the high-performance requirements. In this paper, imprecisions associated with the basic parameters of honeycomb cores are considered. Non-probabilistic models for the in-plane elastic properties of hexagonal honeycomb cores are developed in which the imprecisely defined input and response parameters are represented by only their mean values and variations without the requirement of knowing the probability density distributions of the imprecise parameters as is required for probabilistic methods. Thus, the proposed models predict not only the nominal values of the in-plane elastic properties but also their variations from the respective mean values. The applicability of the proposed models is demonstrated by considering the analysis of the in-plane elastic properties of a honeycomb core made of aluminum 5052-H-32 in which the core material properties are defined by their mean values and variations. The results show that realistic variations of the in-plane elastic properties are obtained using the proposed non-probabilistic models. The sensitivity of the in-plane elastic properties to the imprecisions present in each basic parameter is also investigated.