Traditional energy systems were planned and operated independently, but the diffusion of distributed and renewable energy systems led to the development of new modeling concepts, such as the energy hub. The energy hub is an integrated paradigm, based on the challenging idea of multi-carrier energy systems, in which multiple inputs are conditioned, converted and stored in order to satisfy different types of energy demand. To solve the energy hub optimal scheduling problem, uncertainty sources, such as renewable energy production, price volatility and load demand, must be properly considered. This paper proposes a novel methodology, based on extended Affine Arithmetic, which enables the solving of the optimal scheduling problem in the presence of multiple and heterogeneous uncertainty sources. Realistic case studies are presented and discussed in order to show the effectiveness of the proposed methodology.