This book chapter explains the fundamental concepts of the probabilistic seismic hazard and site effect evaluation. It is divided into four parts: firstly, the theoretical background of the probabilistic seismic hazard methods is explained to compute the earthquake loads used in structural analysis of buildings, namely, the rigid-zone method, the free-zone methods, and the characteristic models. We emphasize the physical meaning of the seismic coefficient prescribed in the seismic code regulations and its association with the return period of ground motion and spectral ordinates. The interconnection of the return period, the recurrence interval, and the lifetime concepts are explained to clarify misconceptions among these terms in connection with the probability of exceedance of motion. Secondly, the seismic hazard methods are applied employing volcanic chain seismicity data, and preliminary seismic hazard maps for rock site are presented for flat topography conditions along El Salvador. Thirdly, the site effects in terms of the amplification of ground motion are studied using soil profiles characterized by the interbedding of lava flows and volcanic ashes. Finally, we present a summary that highlights the most important concepts explained in this book chapter.