Probabilistic seismic performance estimation through surrogate model and unbiased multi‐fidelity Monte Carlo predictor
Xiaoshu Gao,
Jun Iyama,
Tatsuya Itoi
Abstract:This study introduces an approach for probabilistic seismic performance estimation, which focuses on the probability of intensity measures exceeding a specified value based on engineering demand parameters. Conventional methods face challenges owing to the increase in computational costs associated with the uncertainties in earthquake scenarios. To address this, we use high‐fidelity (HF) and low‐fidelity (LF) model data to develop a multilevel hierarchy of surrogate models, which improves the simulation‐based … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.