Tripping, the process whereby a string is moved in either axial direction makes up 30% of the well construction time and is therefore responsible for a significant portion of capital expenditure by operators. Typically, the focus in the industry in optimizing this segment of the operation has centered on minimizing the slips-to-slips connection time. This references the time taken to swing in and make-up, or breakout and rack-back a stand before engaging elevators to either run-in or pull-out with the next component. This required both human-process optimization through training and technological development of topside equipment, first in isolation and then through systems automation. This paper recognizes these optimization efforts but identifies additional potential to significantly reduce invisible-lost-time (ILT) during tripping operations even further by reducing out-of-slips running time in tripping operations, all while keeping wellbore pressures within the safe operating envelope.
Physics-based steady-state fluid dynamics models have been in use for decades to define boundary conditions for these operations. These swab and surge calculations output a velocity limit for moving pipe. Models that are more complex have begun to diffuse into the commercial environment over the last decade and enhance borehole protection by providing a coupled acceleration limit. Acceleration and velocity are inherently linked so an optimization must be performed to arrive at the optimum velocity-time curve.
In this paper we present real-time engineering simulations to create a digital twin of the downhole environment and calculate optimum tripping parameters for every stand. The parameters are then passed as set-points to automated rig control systems. The paper summarizes the physics-based modelling as well as the mathematical optimization. The system, including interfaces required to implement control in the context of drilling systems automation is also described. Field examples are presented whereby exposing actual real-time measurements and derived tripping boundary conditions in an intuitive, accessible user interface can lead to performance improvements.
The ability to calculate the optimum velocity-time curve is the essential ingredient in gaining efficiency while out-of-slips during tripping operations, and simultaneously staying within a safe operating envelope. The resulting reduction in invisible-lost-time demonstrated, and associated reduction in rig time has obvious financial implications for operators and increasingly more important, helps achieve critical ESG targets. Finally, the paper will touch the need, and applicability of such technology in the energy transition new frontiers, specifically geothermal.