Power grids are prone to failure. Time series of reliability measures such as total power loss or energy not supplied can give significant account of the underlying dynamical behavior of these systems, specially when the resulting probability distributions present remarkable features such as an algebraic tail, usually considered the footprint of self-organization and the existence of critical points. In this paper, 7 years (from 2002 to 2008) of Europe’s transport of electricity network failure events have been analyzed and the best fit for this empirical data probability distribution is presented. With the actual span of available data and although there exists a moderate support for the power-law model, the relatively small amount of events contained in the function’s tail suggests that causal factors other than self-organization or a critical state might be significantly ruling these systems’ dynamics.Peer ReviewedPostprint (author’s final draft