2022
DOI: 10.48550/arxiv.2205.08779
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Probability trees and the value of a single intervention

Abstract: The most fundamental problem in statistical causality is determining causal relationships from limited data. Probability trees, which combine prior causal structures with Bayesian updates, have been suggested as a possible solution. In this work, we quantify the information gain from a single intervention and show that both the anticipated information gain, prior to making an intervention, and the expected gain from an intervention have simple expressions. This results in an active-learning method that simply … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?