Summary
In this study, we show results from ambient noise tomography around the KTB (Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland), a continental deep drilling site located at the western edge of the Bohemian Massif, within the Variscan belt of Europe. At the KTB site, crustal rocks have been drilled down to 9 km depth. Before the drilling activity started, several active seismic surveys had been performed to explore its surroundings during the ’80s and early ’90s, in the frame of an extensive exploration of the area aimed at unraveling the characteristics of the continental lower crust that is exposed at surface in this location. Despite the exploration campaigns held at and around the KTB drilling site, there are important targets that are worth further investigation; these are related in particular to the obduction of lower crustal units to the surface, and to the mechanism of orogenic processes in general. Here we present a new 3D shear-wave velocity model of the area from cross-correlations of ambient seismic noise. The model is obtained by a unique data-set composed of two years of continuous data recorded at nine 3-component temporary stations (installed from July 2012 to July 2014) located on top and around the drilling site, and together with the data from 19 permanent stations throughout the region. This paper is focusing on the upper crustal layers, and we show velocity variations at short scales that correlate well with known geological structures in the region of the KTB site, at the surface and at depth. These are used to discuss features that are less well-resolved at present.