In this fundamental study, the simultaneous separation and detection of anions and thiophilic cations in anion exchange chromatography with suppressed conductivity detection is investigated. Mercury(II) and cadmium(II) served as model analytes. Separation and detection was performed by introducing 2-mercaptoethanesulfonate, which forms complexes with both mercury and cadmium with a strong metal-sulfur bond, into the KOH eluent. Additional to the separation on the column, these complexes were able to pass the suppressor. Subsequently, they could be detected as negative peaks. A simple model for the separation mechanism was developed based on these results. Furthermore, the effect of the eluent concentration on the retention factors of both cation complexes and standard anions was examined and quantified. It revealed that the concentration of 2-mercaptoethanesulfonate has more influence on the cations than the KOH concentration. Also, 2.0 mM of 2-mercaptoethanesulfonate had about the same effect on the anion separation as 60 mM KOH. Finally, selectivity and detection limits were investigated. The detection limits were 4.9 μM for mercury and 2.2 μM for cadmium.