Bacterial resistance presents a difficult issue for fluoroquinolone treatment of bacterial infections. In previous work, we reported that 8-methoxy-quinazoline-2,4-diones are active against quinolone-resistant mutants of Escherichia coli. Here, we demonstrate the activity of a representative 8-methoxy-quinazoline-2,4-dione against quinolone-resistant gyrases. Furthermore, 8-methoxy-quinazoline-2,4-dione and other diones are shown to inhibit Staphylococcus aureus gyrase and topoisomerase IV with similar degrees of efficacy, suggesting that the diones might act as dual-targeting agents against S. aureus.Antibiotic resistance is among the most difficult problems we currently face during the treatment of bacterial infections (10, 32). The fluoroquinolones are among the antibacterials affected by resistance, which can severely limit their clinical use (1, 6, 29). Thus, there is an urgent need to develop antimicrobial agents that are effective against drug-resistant pathogens. Two properties of quinolone-like compounds are likely to be useful for finding effective derivatives: (i) activity against quinolone-resistant mutants already present (12) and (ii) equal effectiveness against the two quinolone targets, DNA gyrase and topoisomerase IV (Topo IV) (dual-targeting agents; dual-targeting agents are expected to slow the emergence of drug-resistant mutants [4,19,23,26,31]). The presence of an 8-methoxy group (5, 22, 33) and changing the quinolone core structure to either quinazoline-2,4-dione (2, 8, 18) or pyrido[1,2-c]pyrimidine-1,3-dione (UI7) improve the activity of fluoroquinolone-like compounds against fluoroquinoloneresistant bacteria. We recently identified 8-methoxy-quinazoline-2,4-diones that show little increase in MIC due to gyrA or gyrB quinolone resistance mutations of Escherichia coli (12). To establish that this activity against mutant bacteria is due to improved activity against gyrase, we examined the activity of a representative 8-methoxy-quinazoline-2,4-dione (UING5-207; 8-methoxy 2,4-dione) with purified gyrase. We also assessed its effect on the activity of purified Topo IV to determine whether the in vivo results were likely due to a target switch. Furthermore, to better understand how dione structure influences target selection, we compared the effectiveness of diones for inhibition of catalytic activities of Staphylococcus aureus and E. coli topoisomerases.Based on MIC values determined in previous work (12), we selected three mutant gyrases, GyrA S83W gyrase, GyrA G81C gyrase, and GyrA A67S gyrase, as examples exhibiting high, moderate, and low levels of quinolone resistance in vivo. Mutations were introduced into the E. coli gyrA gene using the overlap extension PCR technique (17), and subunits of E. coli and S. aureus gyrases and Topo IVs were expressed and purified. The active enzymes were reconstituted as described previously (13)(14)(15)(16)28). In vitro activities of the 8-methoxy 2,4-dione were compared with those of a cognate 8-methyl-quinazoline-2,4-dione (UIJR1-048; 8-methyl 2,4-dione)...