Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, for which no safe and efficient vaccines or therapeutic means have been developed. Viral particle assembly and budding processes represent potential targets for therapeutic intervention. However, our understanding of the mechanistic process of VEEV assembly, RNA encapsidation, and the roles of different capsid-specific domains in these events remain to be described. The results of this new study demonstrate that the very amino-terminal VEEV capsid-specific subdomain SD1 is a critical player in the particle assembly process. It functions in a virus-specific mode, and its deletion, mutation, or replacement by the same subdomain derived from other alphaviruses has strong negative effects on infectious virus release. VEEV variants with mutated SD1 accumulate adaptive mutations in both SD1 and SD2, which result in a more efficiently replicating phenotype. Moreover, efficient nucleocapsid and particle assembly proceeds only when the two subdomains, SD1 and SD2, are derived from the same alphavirus. These two subdomains together appear to form the central core of VEEV nucleocapsids, and their interaction is one of the driving forces of virion assembly and budding. The similar domain structures of alphavirus capsid proteins suggest that this new knowledge can be applied to other alphaviruses.
IMPORTANCEAlphaviruses are a group of human and animal pathogens which cause periodic outbreaks of highly debilitating diseases. Despite significant progress made in understanding the overall structure of alphavirus and VEEV virions, and glycoprotein spikes in particular, the mechanistic process of nucleocapsid assembly, RNA encapsidation, and the roles of different capsid-specific domains in these processes remain to be described. Our new data demonstrate that the very amino-terminal subdomain of Venezuelan equine encephalitis virus capsid protein, SD1, plays a critical role in the nucleocapsid assembly. It functions synergistically with the following SD2 (helix I) and appears to form a core in the center of nucleocapsid. The core formation is one of the driving forces of alphavirus particle assembly. V enezuelan equine encephalitis virus (VEEV) is a representative member of the New World (NW) alphaviruses, which circulate mostly in Central and South America (1). In nature, VEEV is transmitted by mosquito vectors between vertebrate hosts, in which it causes a highly debilitating disease, often resulting in meningoencephalitis and a frequently lethal outcome (2). Among humans, the mortality rates are below 1%, mostly among the elderly and the very young, but the disease often leads to neurological sequelae (3, 4). Due to its user-friendly characteristics, VEEV has the potential for development as a biological warfare agent. It can be propagated to very high infectious titers in many commonly used cell lines, is very stable in lyophilized form, and is exceptionally efficiently transmitted by aerosol. Therefore, some of the VEEV serotypes a...