IntroductionReactions are the heart and soul of chemistry. Therefore chemists, to effectively control and improve their chemical reactions, need to know the mechanistic details by which these usually sophisticated, multistep and multicomponent processes with many intermediates and transient species proceed. The tremendous success and rapid broad use of electrospray ionization mass spectrometry (ESI-MS) [1] results mainly from its ability to transfer, in a gentle and efficient way, ions of many types, charge states and nearly unlimited masses from the real-world environment of reaction solutions directly to the diluted gas phase and to characterize these intact and isolated gaseous ions according to their masses and connectivities with the outstanding speed, sensitivity and selectivity that only mass spectrometry is able to provide. ESI-MS (for ion detection and mass and isotopic pattern determination) as well as its tandem version ESI-MS(/MS) (for structural investigation) has therefore established itself as the principal technique to study reaction mechanisms of organic reactions in solution. ESI can fish, rapidly and efficiently, reactants, intermediates and products (either ionic species or molecules in ionic forms) and transfer them to mass spectrometers (leaving behind the solvent molecules and counter ions) to measure their masses and access their structures and intrinsic reactivities using tandem MS/MS experiments. Continuous on-line monitoring of organic reactions of many types by ESI-MS(/MS) ion fishing (Figure 3.1) provides instantaneous and comprehensive snapshots of the ionic composition and thus permits organic chemists to follow how these reactions progress as a function of time and reaction conditions, whereas the high sensitivity and speed of ESI-MS allow even transient (low concentrations for short times) intermediates to be detected and characterized. The intrinsic reactivity of each key gaseous species fished by ESI can also be further investigated via ESI-MS(/MS) experiments in the search for the most intrinsically active species via gas-phase ion/ molecule reactions in which solvent and counter-ion effects are absent. Therefore, the ability to fish ions (or neutral, zwitterionic, or radical species in ionic forms such as protonated, deprotonated, or cationized or anionized molecules) provides a detailed j63 64j 3 Organic Reaction Studies by ESI-MS R 1 OH Scheme 3.2 Currently accepted catalytic cycle for the MBH reaction. 3.2 Reaction Mechanisms j65 66j 3 Organic Reaction Studies by ESI-MS À , CF 3 CO 2 À ). 68j 3 Organic Reaction Studies by ESI-MS 70j 3 Organic Reaction Studies by ESI-MS 98j 3 Organic Reaction Studies by ESI-MS