Red blood cell (RBC) transfusions represent a cornerstone of clinical practice, with RBCs constituting the primary component in transfusion therapy. Extending the preservation of RBCs while maintaining their functional integrity would offer considerable advancements for both transfusion medicine and military healthcare. Despite decades of research, progress in achieving long‐term RBC preservation has been limited. A key challenge is the range of physical and biochemical damage RBCs incur during storage, leading to marked changes in their morphology, physiological function, and viability. While traditional preservation techniques have provided partial mitigation of these damages, their efficacy remains suboptimal. In contrast, nanomaterials, with their distinctive spatial architectures and surface properties, offer a promising avenue for minimizing storage‐related damage and extending RBC preservation. This review provides an overview of the major categories of damage encountered during RBC biopreservation, classified into storage lesions and cryolesions. We also highlight the key role of nanomaterials in enhancing the storage quality of RBCs and prolonging their preservation duration. Finally, we discuss the current challenges and pressing issues faced by nanomaterial‐based RBCs biopreservation.