2023
DOI: 10.1103/physreva.107.012412
|View full text |Cite
|
Sign up to set email alerts
|

Problem-size-independent angles for a Grover-driven quantum approximate optimization algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 25 publications
0
1
0
Order By: Relevance
“…With each of the p iterations, the potential for probably amplitude concentration at |i⟩ corresponding to high-quality solutions increases-given suitable values for the variational parameters γ and t [44,45]. Optimal variational parameters γ and t are obtained using a classical optimiser that minimises with respect to the objective function f (γ, t) = ⟨γ, t|Q|γ, t⟩, (10) such that a lowering of f(γ, t) entails an increased probability of measuring a quantum state that corresponds to a high-quality solution.…”
Section: Qwoa For Combinatorial Optimizationmentioning
confidence: 99%
“…With each of the p iterations, the potential for probably amplitude concentration at |i⟩ corresponding to high-quality solutions increases-given suitable values for the variational parameters γ and t [44,45]. Optimal variational parameters γ and t are obtained using a classical optimiser that minimises with respect to the objective function f (γ, t) = ⟨γ, t|Q|γ, t⟩, (10) such that a lowering of f(γ, t) entails an increased probability of measuring a quantum state that corresponds to a high-quality solution.…”
Section: Qwoa For Combinatorial Optimizationmentioning
confidence: 99%