a b s t r a c tFor any positive integers m and n, let X 1 , X 2 , . . . , X m∨n be independent random variables with possibly nonidentical distributions. Let X 1:n ≤ X 2:n ≤ · · · ≤ X n:n be order statistics of random variables X 1 , X 2 , . . . , X n , and let X 1:m ≤ X 2:m ≤ · · · ≤ X m:m be order statistics of random variables X 1 , X 2 , . . . , X m . It is shown that (X j:n , X j+1:n , . . . , X n:n ) given X i:m > y for j − i ≥ max{n − m, 0}, and (X 1:n , X 2:n , . . . , X j:n ) given X i:m ≤ y for j − i ≤ min{n − m, 0} are all increasing in y with respect to the usual multivariate stochastic order. We thus extend the main results in Dubhashi and Häggström (2008) [1] and Hu and Chen (2008) [2].