Purpose. Neisseria gonorrhoeae is an etiological agent of gonorrhea, which continues to be one of the most important public health problems. Currently, the most important problem in treatment is the mechanisms that determine resistance to drugs of the beta-lactam class, which are recommended for the treatment of gonorrhea. Chromosomal mutations are responsible for resistance to ceftriaxone and cefepime. The possibility of mutations in the gene encoding beta-lactamase (blaTEM) in the penicillinase plasmid may also turn out to be a serious threat. Methods. The occurrence of resistance encoded on penicillinase plasmid has been investigated. For this purpose, the susceptibility of bacteria was determined and the gene for resistance to beta-lactams as well as the plasmids themselves was typed. Results. Of the 333 strains tested, 21 (6.3%) had the beta-lactamase gene and produced penicillinase.The results allow to conclude that among the tested strains of N. gonorrhoeae occurred two of the beta-lactamase: TEM-1 and TEM-135. Most of the known penicillinase plasmid types of N. gonorrhoeae were demonstrated: Asian, African, Toronto/Rio plasmids and Australian variant.Conclusions.In the first three years, TEM-1 beta-lactamases dominated in N. gonorrhoeae, which were replaced by TEM-135 in the following years of the study. Not all molecular methods are capable of varying the types of penicillinase plasmids. A particularly noteworthy observation is the fact that the Australia-type of penicillinase plasmid (3270 bp) was identified for the first time in Europe, and the second time in the world.