2022
DOI: 10.35699/1983-3652.2022.37275
|View full text |Cite
|
Sign up to set email alerts
|

Procedimiento de agrupación de estudiantes según riesgo de abandono para mejorar la gestión estudiantil en educación superior

Abstract: La compleja problemática del abandono estudiantil representa una oportunidad para la aplicación de la tecnología y métodos de la minería de datos en educación superior. El objetivo de esta investigación es obtener el perfil de los estudiantes en riesgo de abandono y así generar planes de gestión estudiantil que impacten sobre las variables que explican esta situación. Para esto se propone utilizar una estructura metodológica CRISP-DM, aplicando herramientas estadísticas y del aprendizaje automático no supervis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 21 publications
0
0
0
Order By: Relevance
“…This study is classified as a quantitative research of descriptive type, adapted from other studies [7], widely explained by Sampieri [8], with an extended data mining approach of the Cross-Standard Process for Data Mining in Industry (CRISP-DM) [9] to analyze RCCD and meet the objective of the study. The phases of the process used are described below: For the analysis of information, the Python 3.11.1 programming language, the Apache Spark platform and the PySpark 3.3.2 library were used.…”
Section: Methodsmentioning
confidence: 99%
“…This study is classified as a quantitative research of descriptive type, adapted from other studies [7], widely explained by Sampieri [8], with an extended data mining approach of the Cross-Standard Process for Data Mining in Industry (CRISP-DM) [9] to analyze RCCD and meet the objective of the study. The phases of the process used are described below: For the analysis of information, the Python 3.11.1 programming language, the Apache Spark platform and the PySpark 3.3.2 library were used.…”
Section: Methodsmentioning
confidence: 99%
“…compared different computational methods, including machine learning and survival analysis techniques, to predict higher education dropout in various contexts in Latin America Flores et al (2022). analyzed eight predictive models to forecast university dropout in Peru, demonstrating the effectiveness of different analytical approaches Hinojosa et al (2022). identified the profile of students at risk of dropout in Chile to generate student management plans that impact the explanatory variables of dropout Negreiros et al (2021).…”
mentioning
confidence: 99%