Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In a recent paper, Baño-Medina et al. (Configuration and Intercomparison of deep learning neural models for statistical downscaling. preprint, 2019) assessed the suitability of deep convolutional neural networks (CNNs) for downscaling of temperature and precipitation over Europe using large-scale ‘perfect’ reanalysis predictors. They compared the results provided by CNNs with those obtained from a set of standard methods which have been traditionally used for downscaling purposes (linear and generalized linear models), concluding that CNNs are well suited for continental-wide applications. That analysis is extended here by assessing the suitability of CNNs for downscaling future climate change projections using Global Climate Model (GCM) outputs as predictors. This is particularly relevant for this type of “black-box” models, whose results cannot be easily explained based on physical reasons and could potentially lead to implausible downscaled projections due to uncontrolled extrapolation artifacts. Based on this premise, we analyze in this work the two key assumptions that are made in perfect prognosis downscaling: (1) the predictors chosen to build the statistical model should be well reproduced by GCMs and (2) the statistical model should be able to reliably extrapolate out of sample (climate change) conditions. As a first step to test the suitability of these models, the latter assumption is assessed here by analyzing how the CNNs affect the raw GCM climate change signal (defined as the difference, or delta, between future and historical climate). Our results show that, as compared to well-established generalized linear models (GLMs), CNNs yield smaller departures from the raw GCM outputs for the end of century, resulting in more plausible downscaling results for climate change applications. Moreover, as a consequence of the automatic treatment of spatial features, CNNs are also found to provide more spatially homogeneous downscaled patterns than GLMs.
In a recent paper, Baño-Medina et al. (Configuration and Intercomparison of deep learning neural models for statistical downscaling. preprint, 2019) assessed the suitability of deep convolutional neural networks (CNNs) for downscaling of temperature and precipitation over Europe using large-scale ‘perfect’ reanalysis predictors. They compared the results provided by CNNs with those obtained from a set of standard methods which have been traditionally used for downscaling purposes (linear and generalized linear models), concluding that CNNs are well suited for continental-wide applications. That analysis is extended here by assessing the suitability of CNNs for downscaling future climate change projections using Global Climate Model (GCM) outputs as predictors. This is particularly relevant for this type of “black-box” models, whose results cannot be easily explained based on physical reasons and could potentially lead to implausible downscaled projections due to uncontrolled extrapolation artifacts. Based on this premise, we analyze in this work the two key assumptions that are made in perfect prognosis downscaling: (1) the predictors chosen to build the statistical model should be well reproduced by GCMs and (2) the statistical model should be able to reliably extrapolate out of sample (climate change) conditions. As a first step to test the suitability of these models, the latter assumption is assessed here by analyzing how the CNNs affect the raw GCM climate change signal (defined as the difference, or delta, between future and historical climate). Our results show that, as compared to well-established generalized linear models (GLMs), CNNs yield smaller departures from the raw GCM outputs for the end of century, resulting in more plausible downscaling results for climate change applications. Moreover, as a consequence of the automatic treatment of spatial features, CNNs are also found to provide more spatially homogeneous downscaled patterns than GLMs.
A notable number of high impact weather extremes have occurred in recent years, often associated with persistent, strongly meandering atmospheric circulation patterns known as Rossby waves. Because of the high societal and ecosystem impacts, it is of great interest to be able to accurately project how such extreme events will change with climate change, and to predict these events on seasonal to subseasonal (S2S) timescales. There are multiple physical links connecting upper atmosphere circulation patterns to surface weather extremes, and it is asking a lot of our dynamical models to accurately simulate all of these. Subsequently, our confidence in future projections and S2S forecasts of extreme events connected to Rossby waves remains relatively low. We also lack full fundamental theories for the growth and propagation of Rossby waves on the spatial and temporal scales relevant to extreme events, particularly under strongly non-linear conditions. By focussing on one of the first links in the chain from upper atmospheric conditions to surface extremes -- the Rossby waveguide -- it may be possible to circumvent some model biases in later links. To further our understanding of the nature of waveguides, links to persistent surface weather events and their representation in models, we recommend: exploring these links in model hierarchies of increasing complexity, developing fundamental theory, exploiting novel large ensemble data sets, harnessing deep learning, and increased community collaboration. This would help increase understanding and confidence in both S2S predictions of extremes and of projections of the impact of climate change on extreme weather events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.