Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan Africa
Mame Diarra Bousso Dieng,
Adrian M. Tompkins,
Joël Arnault
et al.
Abstract:With the goal of eradication by 2030, Malaria poses a significant health threat, profoundly influenced by meteorological and hydrological conditions. In support of malaria vector control efforts, we present a high‐resolution, coupled physically‐based modeling approach integrating WRF‐Hydro and VECTRI. This model approach accurately captures topographic details at the scale of larvae habitats in the Nouna Health and Demographic Surveillance Systems in Sub‐Saharan Africa. Our study demonstrates the proficiency o… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.