In this work, three-dimensional (3D) shaping of aluminum nitride (AlN) UV-curable dispersions using CeraFab 7500 device equipped with the light engine emitting 365 nm wavelength (a UV-LCM device) is presented. The purpose of this study was the shaping of AlN pieces with microchannels for the future potential use as microchannel heat exchangers. The dispersions were characterized by the means of the particle size distribution, rheological measurements, and the cure depth evaluation. In shaping via UV-LCM, we applied dispersions containing 40 vol % solid load and different types of photoinitiators and their concentrations, as well as different settings of the printing parameters. Cuboidal plates with channels and cylindrical 3D structures were fabricated, debound, and sintered. For comparing ceramics properties, reference samples were prepared via uniaxial and cold isostatic pressing, using the same powder mixture as in the dispersions, and later sintered. The thermal conductivity of the sintered specimens was calculated, based on density and thermal diffusivity measurements.