Bis(demethoxy)curcumin (BDMC), extracted from rhizomes of the traditional herb Curcuma longa, has revealed a wide range of medicinal applications, such as antimicrobial and anticarcinogenic. Pure BDMC was obtained by recrystallization from ethanol and three BDMC solvates were identified with acetone, methanol and isopropanol. The crystal structures of pure BDMC and the solvates were resolved by single crystal X-ray diffraction. Analyses of the crystal structures and calculations of crystal packing efficiencies revealed that pure BDMC is efficiently packed. The solvents involved are not utilized to fill the void spaces in the crystal structures, but to provide effective intermolecular interactions. The stoichiometry of the three solvates obtained from single crystal data is 1:1, which is in good agreement with the gravimetric analyses. Furthermore, the desolvation process and stability of the solvates were investigated by various analytical techniques including X-ray diffraction, differential scanning calorimetry, thermogravimetric analyses, hot-stage microscopy and dynamic vapor sorption. Results show that the methanol solvate is more stable compared to the acetone and isopropanol solvates attributed to the strong hydrogen bonding network. Moreover, the desolvation process of the three solvates proceeds through a destructive-reconstructive mechanism.