This work shows the electrochemical study of Al-Cu/TiC composite and Al-Cu alloy immersed in synthetic seawater. Polarization curves (PCs) and the corrosion potential as a function of the time were the electrochemical techniques used to characterize the corrosion process. A typical three-electrode electrochemical cell was used, where the working electrodes (WE) were made from Al-Cu alloy and composite samples, the reference electrode was the saturated calomel electrode (SCE) and a sintered graphite rod was used as auxiliary electrode. The electrochemical measures were carried out at atmospheric pressure and room temperature, and the total exposure time was 24 h. In addition, in order to analyze the corrosion form, a superfi cial analysis using scanning electron microscopy (SEM) was carried out. The electrochemical results showed that the highest corrosion rate corresponding to composite samples and the global corrosion process is a mix process, that is to say, the charge transfer resistance is limited by diffusional resistance. Pitting corrosion type was observed.