Nanopowder samples of lead zirconate titanate (Pb1.1Zr0.52Ti0.48O3 or PZT) were prepared by the sol‐gel method with controlled pH values. The samples were characterized using FTIR spectroscopy, XRD, FE‐SEM, and TEM techniques. Most of the peaks in the XRD pattern were related to the coexistence of tetragonal‐rhombohedral phases and confirmed the formation of PZT with a perovskite structure. Also, the crystallite size of PZT nanopowders was in a range of 17‐28 nm. FTIR spectroscopy revealed a longitudinal optical (LO) and transverse optical (TO) phonon modes corresponding to the stretching vibration of Ti‐O and Zr‐O bonds. The influence of pH values on the LO and TO phonon modes, LO‐TO splitting, refractive index n(ω), extinction coefficient k(ω), and the real ɛ1(ω) and imaginary ɛ2(ω) parts of dielectric function was discussed. These properties were investigated in the mid‐infrared region (450‐750 cm−1). The energy loss function Im[−1/(ɛ)] of PZT nanopowders was obtained by Kramers‐Kronig dispersion relations. The TO phonon frequency decreases with increasing crystallite size of the PZT samples. This effect does not happen at pH 8 to pH 9. As the crystallite size increased from 17.26 nm (at pH 5) to 27.25 nm (at pH 7), the LO‐TO splitting increased as well. This result showed that the optimum pH for absorption of IR radiation and optical application was at pH 7.