The hibernation-promoting factor (Hpf) in Staphylococcus aureus binds to 70S ribosomes and induces the formation of the 100S complex (70S dimer), leading to translational avoidance and occlusion of ribosomes from RNase R-mediated degradation. Here, we show that the 3′-5′ exoribonuclease YhaM plays a previously unrecognized role in modulating ribosome stability. Unlike RNase R, which directly degrades the 16S rRNA of ribosomes in S. aureus cells lacking Hpf, YhaM destabilizes ribosomes by indirectly degrading the 3′-hpf mRNA that carries an intrinsic terminator. YhaM adopts an active hexameric assembly and robustly cleaves ssRNA in a manganese-dependent manner. In vivo, YhaM appears to be a low-processive enzyme, trimming the hpf mRNA by only 1 nucleotide. Deletion of yhaM delays cell growth. These findings substantiate the physiological significance of this cryptic enzyme and the protective role of Hpf in ribosome integrity, providing a mechanistic understanding of bacterial ribosome turnover.