The identification of oil species and their characteristics in oil spills is particularly important for their efficient disposal. Since aromatic hydrocarbons (AHs) with various characteristics are the major fluorescent components of oils in seawater, they can be used to detect different oil species in seawater. Here, we developed a composition method using the fluorescence spectra of eight AH categories analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate the contribution of AHs to the total fluorescence of six different oil species. Qualitative and quantitative difference analysis of the experimental and composite fluorescence spectra was performed based on the redshift of the main peak position, the fluorescence intensity distance, and the generalized included angle cosine, while correlation analysis was used to establish the relationship between the different fluorescence spectral parameters and the American Petroleum Institute gravity and viscosity of the oil species. The fluorescence spectra recorded for heavy oil samples indicated a reduction in the fluorescence signal of fluorene series and an increase in the contribution of acenaphthene and pyrene series, indicating that the currently developed composition method by fluorescence spectroscopy combined with GC-MS can be used to distinguish and identify oil species in seawater samples.