The polyhydroxyalkanoates (PHA) is one of the most investigated polymers in the development of eco-friendly nanocomposites. Biotechnology is used for their production and the mechanisms of their biodegradation make them very interesting polymers to replace conventional polymers in applications where the biodegradability is a desirable characteristic. PHA applications include medical field (suture fasteners, staples, screws, valves, orthopedic pins, etc.) besides agriculture and packaging sectors. The introduction of nanofillers in the polyhydroxyalkanoates matrixes is one of the ways used in an attempt to improve their properties or to reach new properties. With this goal, PHA/carbon nanotubes (CNT) nanocomposites have been quite studied. The remarkable properties shown by carbon nanotubes such as high Young's modulus, high thermal stability and electrical conductivity, and their low chemical reactivity is the key to achieve excellent properties from PHA nanocomposites, and to maintaining the matrix biodegradability. CNT cause changes in PHA characteristics that can affect the biodegradation rate as crystallinity degree, porosity, surface roughness, and hydrophilicity of polymer matrix. Many researches have shown the effects and advances caused by CNT filler in the mechanical resistance, crystallinity degree, thermal properties, and other important characteristics of PHA nanocomposites. However, these works have disregarded the study of the biodegradation of PHA/CNT nanocomposites, what is essential to define the application field of final product.