PurposeThe purpose of the paper is to advance remote robotic fabrication through an iterative and pedagogical protocol for shaping architectural grounds. Advancements in autonomous robotic tools enable to reach increasingly larger scales of architectural and landscape construction and operate in remote and inaccessible sites. In parallel, the relation of architecture to its environment is significantly reconsidered, as the building industry's contribution to the environmental stress increases. In response, new practices emerge, addressing the reshaping and modulation of environments using digital tools. The context of extra-terrestrial architecture provides a ground for exploring these issues, as future practice in this domain relies on the use of remote autonomous means for repurposing local matter. As a result, the novelty in robotic construction laboratories is tied to innovation in architectural pedagogy.Design/methodology/approachThis paper puts forth a pedagogical protocol and iterative framework for digital groundscaping using robotic tools. The framework is demonstrated through an intensive workshop led by the authors. To situate the discussion, digital groundscaping is linked to several conditions that characterize practice and relate to pedagogy. These conditions include the experimental dimension of knowledge in digital fabrication, the convergence of knowledge as part of the blur between the fields of architecture and landscape architecture and the bridging of heterogeneous knowledge sets (virtual and physical), which robotic fabrication on natural terrains entails.FindingsThe outcomes of the workshop indicate that iterative processes can assist in applying autonomous design protocols on remote grounds. The protocols were assessed in light of the roles of technological tools, design iterations and material agency in the robotic fabrication.Originality/valueThe paper concludes with observations linking the iterative protocol to new avenues in architectural pedagogy as means of advancing the capacity to digitally design, modulate and transform natural grounds.