Among past years interest in robot-assisted rehabilitation arose significantly; thus, constructions such as exoskeletons are involved in this process much more often. As a patient's bio-signals may be included in a control loop of these devices, they may be also used to support the motion of extremities in an everyday life. Therefore, a field of control over them stays a popular research topic. For this reason, an exoskeleton described in a paper was designed. The most important aim of a project was to enable all anatomical movements within ranges required for the lifting of an object while minimising the mass of the device; to enable everyday support within a wide range of motions. The following paper contains a concept of such a device with the description of a whole designing proces. It consists of antropomethric modelling, FEM simulations and topology optimisation applied to decrease the amount of material needed, and the analysis of considered manufacturing methods. As the exoskeleton was designed to be built with FDM 3-D printing technology, created parts were modelled orthotopically based on nominal mechanical parameters of filaments and directions of their beams. The design is complemented with a short description of control with EMG signals and analysis of load on a user's musculoskeletal system.