The reduced density matrices of a many-body quantum system form a convex set, whose threedimensional projection Θ is convex in R 3 . The boundary ∂Θ of Θ may exhibit nontrivial geometry, in particular ruled surfaces. Two physical mechanisms are known for the origins of ruled surfaces: symmetry breaking and gapless. In this work, we study the emergence of ruled surfaces for systems with local Hamiltonians in infinite spatial dimension, where the reduced density matrices are known to be separable as a consequence of the quantum de Finetti's theorem. This allows us to identify the reduced density matrix geometry with joint product numerical range Π of the Hamiltonian interaction terms. We focus on the case where the interaction terms have certain structures, such that ruled surface emerge naturally when taking a convex hull of Π. We show that, a ruled surface on ∂Θ sitting in Π has a gapless origin, otherwise it has a symmetry breaking origin. As an example, we demonstrate that a famous ruled surface, known as the oloid, is a possible shape of Θ, with two boundary pieces of symmetry breaking origin separated by two gapless lines.