2005
DOI: 10.4310/hha.2005.v7.n1.a2
|View full text |Cite
|
Sign up to set email alerts
|

Product structures on four dimensional solvable Lie algebras

Abstract: It is the aim of this work to study product structures on four dimensional solvable Lie algebras. We determine all possible paracomplex structures and consider the case when one of the subalgebras is an ideal. These results are applied to the case of Manin triples and complex product structures. We also analyze the three dimensional subalgebras.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
126
0
8

Year Published

2006
2006
2022
2022

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 87 publications
(134 citation statements)
references
References 21 publications
0
126
0
8
Order By: Relevance
“…В частности, в работе [24] получена классификация левоинвариантных пара-гиперкомплексных структур на четырехмерных груп-пах Ли. При некоторых дополнительных предположениях такие структуры были описаны в [27].…”
Section: скобка куранта в пространстве сечений γ(T (M )) определяетсяunclassified
See 2 more Smart Citations
“…В частности, в работе [24] получена классификация левоинвариантных пара-гиперкомплексных структур на четырехмерных груп-пах Ли. При некоторых дополнительных предположениях такие структуры были описаны в [27].…”
Section: скобка куранта в пространстве сечений γ(T (M )) определяетсяunclassified
“…В [22]- [26] дано много других интересных примеров ле-воинвариантных гиперсимплектических структур на разрешимых группах Ли. Все такие структуры на 4-мерных группах Ли классифицированы в [24].…”
Section: специальные пара-кэлеровы многообразия Ttunclassified
See 1 more Smart Citation
“…A list of isomorphism classes of the Lie algebras is in use of many authors for different purposes, for example, [1,2,5,12,33,34,36]. But the problem of unification and correction of the existing lists (see, e.g., [3, 8, 20-22, 24-28, 35, 43]) is a very laborious task, even in the case of low dimensions, because the number of entries in such lists rapidly increases with growing dimension and the problem of classification of Lie algebras includes a subproblem of reduction of pair of matrices to a canonical form [16].…”
Section: Realizations Of Lie Algebras On Real and Complex Planesmentioning
confidence: 99%
“…This classification, restricted to the solvable case, was also shown in [2]. The next simplest step in order to obtain a better understanding of these structures, would be the classification of the 6-dimensional nilpotent Lie algebras which admit them.…”
Section: Introductionmentioning
confidence: 99%