Activated carbon-filled mixed matrix membranes were commonly used to enhance the separation performance of liquid or gas separation processes. Activated carbon is traditionally derived from agricultural crops such as coconut shells or wood biomass. Marine microalgae however have a great potential to produce powdered activated carbon. In this study, marine microalgae Chlorella vulgaris have been evaluated for their carbon content, and the 16.09% carbon content has potential to be employed as a raw material in manufacturing activated carbon powder. Dry microalgae were carbonized at a temperature of 500 °C for 30 min, at a constant increment rate of temperature of 10 °C per minute to produce microalgae charcoal. Chemically-based activation treatments using H3PO4 and ZnCl2 with concentrations of 10%, 30%, and 50%, respectively, assisted by microwave irradiation, have been used to prepare activated carbon. The properties of activated carbon powder were analyzed including yields, ash content, volatile substances, pure activated carbon content, absorption of iodine solution, surface area, and imaging of activated carbon using SEM-EDX. The best treatment characteristics were obtained using H3PO4 at a concentration of 50% with characteristics of 19.47% yield, 11.19% ash content, 31.92% volatile content, 56.89% pure activated carbon, 325.17 mg g−1 iodine absorption, and 109.273 m2 g−1 surface area based on the Brunauer–Emmett–Teller (BET) method, as well as a 5.5-nm average pore diameter. The SEM-EDX imaging results showed the formation of micropores on the surface of activated carbon, with carbon content reaching 72.31%; however, impurities could decrease the surface area and reduce the absorption performance of microalgae activated carbon.