Anthropogenic inputs of nutrients to coastal waters have rapidly restructured coastal ecosystems.To examine the response of macrophyte communities to land-derived nitrogen loading, we measured macrophyte biomass monthly for six years in three estuaries subject to different nitrogen loads owing to different land uses on the watersheds. The set of estuaries sampled had nitrogen loads over the broad range of 12 to 601 kg N ha -1 y -1 . Macrophyte biomass increased as nitrogen loads increased, but the response of individual taxa varied. Specifically, biomass of Cladophora vagabunda and Gracilaria tikvahiae increased significantly as nitrogen loads increased. The biomass of other macroalgal taxa tended to decrease with increasing load, and the relative proportion of these taxa to total macrophyte biomass also decreased. The seagrass, Zostera marina, disappeared from the higher loaded estuaries, but remained abundant in the estuary with the lowest load. Seasonal changes in macroalgal standing stock were also affected by nitrogen load, with larger fluctuations in biomass across the year and higher minimum biomass of macroalgae in the higher loaded estuaries. There were no significant changes in macrophyte biomass over the six years of this study, but there was a slight trend of increasing macroalgal biomass in the latter years. Macroalgal biomass was not related to irradiance or temperature, but Z. marina biomass was highest during the summer months when light and temperatures peak. Irradiance might, however, be a secondary limiting factor controlling macroalgal biomass in the higher loaded estuaries by restricting the depth of the macroalgal canopy. The relationship between the bloom-forming macroalgal species, C. vagabunda and G. tikvahiae, and nitrogen loads suggested a strong connection between development on watersheds and macroalgal blooms and loss of seagrasses. The influence of watershed land uses largely Fox et al. 3 overwhelmed seasonal and inter-annual differences in standing stock of macrophytes in these temperate estuaries.