The atomic structure of the fivefold symmetric quasicrystal surface of icosahedral AlPdMn has been investigated by means of a dynamical low-energy-electron diffraction (LEED) analysis. Approximations were developed to make the structure of an aperiodic, quasicrystalline surface region accessible to LEED theory. A mix of several closely similar, relaxed, bulklike lattice terminations is favored, all of which have a dense Al-rich layer on top followed by a layer with a composition of about 50% Al and 50% Pd. The interlayer spacing between these two topmost layers is contracted from the bulk value by 0.1 Å, to a final value of 0.38 Å, and the lateral density of the two topmost layers taken together is similar to that of an Al(111) surface. The LEED structural result is qualitatively consistent with data from ion scattering spectroscopy, which supports an Alrich termination.
Keywords
Ames Laboratory, Physics and Astronomy
Disciplines
Biological and Chemical Physics | Physical Chemistry
CommentsThis article is from Physical Review B 57, no. 13 (1998) The atomic structure of the fivefold symmetric quasicrystal surface of icosahedral AlPdMn has been investigated by means of a dynamical low-energy-electron diffraction ͑LEED͒ analysis. Approximations were developed to make the structure of an aperiodic, quasicrystalline surface region accessible to LEED theory. A mix of several closely similar, relaxed, bulklike lattice terminations is favored, all of which have a dense Al-rich layer on top followed by a layer with a composition of about 50% Al and 50% Pd. The interlayer spacing between these two topmost layers is contracted from the bulk value by 0.1 Å, to a final value of 0.38 Å, and the lateral density of the two topmost layers taken together is similar to that of an Al͑111͒ surface. The LEED structural result is qualitatively consistent with data from ion scattering spectroscopy, which supports an Al-rich termination. ͓S0163-1829͑98͒03713-8͔