2020
DOI: 10.1088/1674-1137/44/2/023105
|View full text |Cite
|
Sign up to set email alerts
|

Production and constraints for a massive dark photon at electron-positron colliders *

Abstract: Dark sectors may couple to the Standard Model via one or more mediator particles. In this paper, we discuss two types of mediators: the dark photon A and the dark scalar mediator φ. The total cross sections and various differential distributions of signal processes of e + e − → qqA and e + e − → qqφ (q = u, d, c, s and b quarks) are discussed, and then we focus on an invisible A study due to the cleaner background processes at future e + e − colliders. It is found that kinematic distributions of the two-jet sy… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
2

Year Published

2020
2020
2022
2022

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 88 publications
(168 reference statements)
0
1
0
2
Order By: Relevance
“…In a more speculative framework, we can assume that the Bremsstrahlung process leads to the formation of a massive dark photon. Recently, this hypothetical particle, mediator of a force not contemplated by the standard model, has attracted the attention of theoretical physicists since, weakly interacting with both ordinary and dark matter, it could explain some experimental phenomena to which physics is not still able to answer (for instance, neutrino oscillation and baryon asymmetry) [52][53][54]. In such a case, the first term of the Lagrangian (44) must be replaced by a new one given by the following: A is the dark photon field, m D P .…”
Section: Discussionmentioning
confidence: 99%
“…In a more speculative framework, we can assume that the Bremsstrahlung process leads to the formation of a massive dark photon. Recently, this hypothetical particle, mediator of a force not contemplated by the standard model, has attracted the attention of theoretical physicists since, weakly interacting with both ordinary and dark matter, it could explain some experimental phenomena to which physics is not still able to answer (for instance, neutrino oscillation and baryon asymmetry) [52][53][54]. In such a case, the first term of the Lagrangian (44) must be replaced by a new one given by the following: A is the dark photon field, m D P .…”
Section: Discussionmentioning
confidence: 99%
“…A lagrangiana que descreve o sistema composto pelo fóton ordinário e o fóton escuro é dada por [71]: A principal fonte de fótons escuros com massa abaixo de 100 keV seriam estrelas, nas quais a taxa de fótons escuros produzidos pela oscilação de fótons ordinários seria elevada, e dependeria da massa do fóton escuro, e da composição e temperatura das estrelas estudadas [72]. Para massas acima de 1 MeV, a principal fonte de fótons escuros seria a aniquilação de partículas de matéria escura fermiônica que estaria acumulada em poços gravitacionais, como os centros galácticos [73].…”
Section: Fótons Escurosunclassified
“…Também é possível, para energias da ordem de centenas de keV, a procura através do efeito Compton [74]. Entretanto, para massas maiores que 2 m e , a probabilidade do fóton escuro ser absorvido no detector é muito baixa, e a técnica de procura mais eficiente passa a ser a detecção de seu decaimento em um par partículaantipartícula do modelo padrão [75].…”
Section: Fótons Escurosunclassified