A gene encoding a glycoside hydrolase family 44 (GH44) protein from Clostridium acetobutylicum ATCC 824 was synthesized and transformed into Escherichia coli. The previously uncharacterized protein was expressed with a C-terminal His tag and purified by nickel-nitrilotriacetic acid affinity chromatography. Crystallization and X-ray diffraction to a 2.2-Å resolution revealed a triose phosphate isomerase (TIM) barrel-like structure with additional Greek key and -sandwich folds, similar to other GH44 crystal structures. The enzyme hydrolyzes cellotetraose and larger cellooligosaccharides, yielding an unbalanced product distribution, including some glucose. It attacks carboxymethylcellulose and xylan at approximately the same rates. Its activity on carboxymethylcellulose is much higher than that of the isolated C. acetobutylicum cellulosome. It also extensively converts lichenan to oligosaccharides of intermediate size and attacks Avicel to a limited extent. The enzyme has an optimal temperature in a 10-min assay of 55°C and an optimal pH of 5.0.Thirteen glycoside hydrolase (GH) families, each having members related to each other by amino acid sequence, contain enzymes that hydrolyze cellulose and/or cellooligosaccharides (4; http://www.cazy.org). Among them is GH family 44 (GH44), most of whose enzymes are endoglucanases (EGs). In general, EGs are more active on longer rather than on shorter chains and are more likely to attack bonds in the interiors of carbohydrate chains than those near their termini.With one exception, GH44 enzymes are produced by bacteria, both aerobic and anaerobic. At present, 29 amino acid sequences of GH44 members have been determined (4). Often they are combined with other GHs in multienzyme proteins (Fig. 1).Not all of these GH44 enzymes have been produced in vitro, and those that have been produced have only been partially characterized. Experimental results indicate that GH44 enzymes exclusively cleave -1,4 bonds between glucosyl and xylosyl residues and that they have different abilities to attack xylan, lichenan, and different cellulose forms, such as Avicel, acid-swollen cellulose, and carboxymethyl cellulose (CMC), with the presence of a carbohydrate-binding module (CBM) allowing higher activity on solid cellulose. They appear to be inactive on short oligosaccharides, like p-nitrophenyl (PNP)--glucopyranoside, PNP--cellobioside, and PNP--xylopyranoside.Most GH families containing cellulases have at least one member with a known tertiary structure. That was not true of GH44 until Kitago et al. (15) published six different crystal structures of an EG, CelJ, from Clostridium thermocellum.