Polymer enhanced oil recovery (EOR) pilots were implemented in various mature oilfield reservoirs in Colombia with encouraging results. That chemical EOR technology is often considered as a promising process to faster recover oil. To increase the chance of success of such an industrial project it is important not to neglect the potential impact of residual polymer in back produced effluents. The objective of this work is to highlight the impact of back-produced EOR polymer at the laboratory scale on various topside equipment before deploying the polymer injection at wider scale in a heavy oil field (18° API).
A topside facility review was first performed to collect operational conditions and parameters, to identify applied treatment technologies and to define relevant sampling locations for the laboratory study. The impact of the residual acrylamide/ATBS ter-polymer selected for the future polymer implementation was then explored in a set of experiments as part of a dedicated laboratory workflow representing the whole surface treatment chain. The scope of the study has covered primary separation, static gravity water clarifying, deep-bed filtration and heater fouling. Large residual polymer concentration and water cut ranges were investigated to anticipate some produced fluid composition change over time.
In the case studied, the selected polymer does not stabilize tight water-in-oil emulsions, but it has a negative impact on the water quality. Some compatibility issues are observed with incumbent demulsifiers, which seems to be sensitive to both polymer concentration and water cut. The fouling risk of heat exchanger is very low in the testing conditions. In the water de-oiling side, filtration and gravity settling performance are reduced but the right chemical and equipment combination enables to obtain a better water quality and to meet injection specifications targets.
Novel/Additive Information: This work illustrates that management of produced fluid containing EOR polymer has to be considered as early as possible in the project implementation. It also points out that laboratory experiments are useful to better appraise and mitigate the potential operational issues. All the results obtained in such a study are valuable guideline and input data for treatment facilities upgrade studies. In polymer flooding roadmap implementation, it is key to bond operational conditions and laboratory parameters in order to be as close as possible to the field conditions as each case is unique.