Interpenetrating Phase Composites (IPC) belong to a special subcategory of composite materials and reveal enhanced properties compared to the more common particle or fibre reinforced composite materials. However, as the use of conventional manufacturing processes creates structural deficits, these IPC are not able to exploit their complete potential. In this respect, infiltration of open-pore bodies from alumina with an aluminium alloy in the semi-solid state offers great perspectives for manufacturing of IPC. In this context, this paper is focusing on significant structural characteristics of metal-ceramic IPC produced in this way by using a tool with an open die cavity. Thereby, the macroscopic mould filling, possible damage of the ceramic body, the residual porosity, the filling of microporosity of the cell walls and possible interface reactions depending on the thermal parameters of the manufacturing process were investigated in this paper.