Biodiesel produced through catalytic transesterification of triglycerides from edible and non-edible oils and alcohol is considered an alternative to traditional petro-diesel. The interest in the use of alkaline earth metal oxides as heterogeneous basic catalysts has increased due to their availability, non-toxicity, the capacity to be reused, low cost, and high concentration of surface basic sites that provide the activity. This work is a compilation of the strategies to understand the effect of the source, synthesis, and thermal treatment of MgO, CaO, SrO, and BaO on the improvement of the surface basic sites density and strength, the morphology of the solid structure, stability during reaction and reusability. These parameters are commonly modified or enhanced by mixing these oxides or with alkaline metals. Also, the improvement of the acid-base properties and to avoid the lixiviation of catalysts can be achieved by supporting the alkaline earth metal oxides on another oxide. Additionally, the effect of the most relevant operation conditions in oil transesterification reactions such as methanol to oil ratio, temperature, agitation method, pressure, and catalysts concentration are reviewed. This review attempts to elucidate the optimum parameters of reaction and their application in different oils.