Recently, the pyrolysis process has been adapted as a sustainable strategy to convert metallized food packaging plastics waste (MFPW) into energy products (paraffin wax, biogas, and carbon black particles) and to recover aluminum. Usually, catalysts are used in pyrolysis treatment to refine pyrolysis products and to increase their yield. In order to study the effect of a catalyst on the formulated volatile products, this work aims to study the pyrolysis behavior of MFPW in presence of catalyst, using TG-FTIR-GC–MS system. The pyrolysis experiments were conducted with ZSM-5 Zeolite catalyst with different concentrations (10, 30, and 50 wt.%) at different heating rates (5, 10, 15, 20, 25, and 30 °C/min). In addition, TG-FTIR system and GC-MS unit were used to observe and analyze the thermal and chemical degradation of the obtained volatile compounds at maximum decomposition peaks. In addition, the kinetic results of catalytic pyrolysis of ZSM-5/MFPW samples matched when model-free methods, a distributed activation energy model (DAEM), and an independent parallel reaction kinetic model (IPR) were used. The TGA-DTG results showed that addition of a catalyst did not have a significant effect on the features of the TGA-DTG curves with similar weight loss of 87–90 wt.% (without taking the weight of the catalyst into account). Meanwhile, FTIR results manifested strong presence of methane and high-intensity functional group of carboxylic acid residues, especially at high concentration of ZSM-5 and high heating rates. Likewise, GC-MS measurements showed that Benzene, Toluene, Hexane, p-Xylene, etc. compounds (main flammable liquid compounds in petroleum oil) generated catalysts exceeding 50%. Finally, pyrolysis kinetics showed that the whole activation energies of catalytic pyrolysis process of MFPW were estimated at 289 kJ/mol and 110, 350, and 174 kJ/mol for ZSM-5/MFPW samples (10, 30, and 50 wt.%, respectively), whereas DAEM and IPR approaches succeeded to simulate TGA and DTG profiles with deviations below <1.