Acid–base
catalysis, which involves one or more proton transfer
reactions, is a chemical mechanism commonly employed by many enzymes.
The molecular basis for catalysis is often derived from structures
determined at the optimal pH for enzyme activity. However, direct
observation of protons from experimental structures is quite difficult;
thus, a complete mechanistic description for most enzymes remains
lacking. Dihydrofolate reductase (DHFR) exemplifies general acid–base
catalysis, requiring hydride transfer and protonation of its substrate,
DHF, to form the product, tetrahydrofolate (THF). Previous X-ray and
neutron crystal structures coupled with theoretical calculations have
proposed that solvent mediates the protonation step. However, visualization
of a proton transfer has been elusive. Based on a 2.1 Å resolution
neutron structure of a pseudo-Michaelis complex of
E. coli
DHFR determined at acidic pH, we report the
direct observation of the catalytic proton and its parent solvent
molecule. Comparison of X-ray and neutron structures elucidated at
acidic and neutral pH reveals dampened dynamics at acidic pH, even
for the regulatory Met20 loop. Guided by the structures and calculations,
we propose a mechanism where dynamics are crucial for solvent entry
and protonation of substrate. This mechanism invokes the release of
a sole proton from a hydronium (H
3
O
+
) ion, its
pathway through a narrow channel that sterically hinders the passage
of water, and the ultimate protonation of DHF at the N5 atom.