Potato liquor, a byproduct of potato starch production, is steam-treated to produce protein isolate. The heat treated potato liquor (HTPL), containing significant amounts of organic compounds, still needs to be further treated before it is discarded. Presently, the most common strategy for HTPL management is concentrating it via evaporation before using it as a fertilizer. In this study, this scenario was compared with two biotreatments: (1) fermentation using filamentous fungus R. oryzae to produce a protein-rich biomass, and (2) anaerobic digestion of the HTPL to produce biogas. Technical, economic and environmental analyses were performed via computational simulation to determine potential benefits of the proposed scenarios to a plant discarding 19.64 ton/h of HTPL. Fungal cultivation was found to be the preferred scenario with respect to the economic aspects. This scenario needed only 46% of the investment needed for the evaporation scenario. In terms of the environmental impacts, fungal cultivation yielded the lowest impacts in the acidification, terrestrial eutrophication, freshwater eutrophication, marine eutrophication and freshwater ecotoxicity impact categories. The lowest impact in the climate change category was obtained when using the HTPL for anaerobic digestion.