Abstract:In the present study, the mesostructure of a fused deposition modeling (FDM) processed part is considered for the investigation of its mechanical behavior. The layers of FDM printed part behave as a unidirectional fiber reinforced laminae, which are treated as an orthotropic material. The finite element (FE) procedure to find elastic moduli of a layer of the FDM processed part is presented. The mesostructure of the part that would be obtained from the process is replicated in FE models in order to find stiffness matrix of a layer. Two distinctive architectures of mesostructure are considered in the study to predict the mechanical behavior of the parts. Also, influences of layer thickness, road shape and air gap on the elastic properties of a material are investigated. Further, the parts fabricated with FDM process are treated as laminate structures. From the numerical results, it is seen that the elastic moduli are governed by mesostructures. Our laminate results are validated with experimental to demonstrate the use of classical laminate theory (CLT) for FDM parts. The elastic moduli (E 1 , E 2 , G 12 , ν 12 ) of a layer used in the analysis are calculated from FE simulations. This study establishes relationship between mesostructure and macro mechanical properties of the part.