Dividing wall column (DWC) is an atypical distillation column with an internal, vertical WE partition wall that effectively accommodates two conventional distillation columns into one to improve the thermodynamic efficiency. In previous studies, different equivalent models by combining conventional columns are adopted to approximate the DWC modeling, which may not well describe the integration of the DWC; moreover, the computational cost increases when multiple columns are implemented to represent one DWC. In this paper, a rigorous mathematical model is proposed based on the mass balance, the energy and phase equilibrium of the DWC, where decision variables and state variables are equally treated. The model was developed in the general process modeling system (gPROMS). Based on the rigorous model, the influences of liquid split ratio and vapor split ratio are discussed, and it is shown that the heat duty is sensitive to changes on the liquid and vapor split ratio. Inappropriate liquid and vapor split ratio will increase the mixing effects at both ends of the dividing wall, and adversely affect the thermodynamic efficiency. Hence, the degree of mixing is defined to characterize the column efficiency. Furthermore, the middle component split ratio at the top of the pre-fractionator has an optimal point for better energy saving with certain liquid and vapor split ratios, and can be used as an indicator for the energy performance. Finally, the model was tested and validated against literature data by using the ternary benzene–toluene–xylene mixture system as a case study.