As the population ages, the occurrence of chronic pathologies becomes more common. Leukocyte telomere shortening associates to ageing and age-related diseases. Recent studies suggest that environmental chemicals can affect telomere length. Persistent organic pollutants (POPs) are most relevant, since they are ingested with foods, and accumulate in the body for a long time. This longitudinal study was undertaken to test if circulating POPs predict telomere length and shortening in elderly people. We studied 1082 subjects belonging to the Helsinki Birth Cohort Study (born 1934-1944), undergoing two visits (2001-2004 and 2011-2014). POPs (oxychlordane, trans-nonachlor, p, p’-DDE, PCB 153, BDE 47, BDE 153) were analysed at baseline. Relative telomere length was measured twice, ’10 years apart, by quantitative real-time PCR. Oxychlordane, trans-nonachlor and PCB-153 levels were significant predictors of telomere length and shortening. In men, we did not find a linear relationship between POPs exposure and telomere shortening. In women, a significant reduction across quartiles categories of oxychlordane and trans-nonachlor exposure was observed. Baseline characteristics of subjects in the highest POPs categories included higher levels of C-reactive protein and fasting glucose, and lower body fat percentage. This is one of few studies combining POPs and telomere length. Our results indicate that exposure to oxychlordane, trans-nonachlor and PCB 153 predicts telomere attrition. This finding is important because concentrations of POPs observed here occur in contemporary younger people, and may contribute to an accelerated ageing.