Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential, coupled with the limitations of non-functional omics analyses, has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening. By repurposing an airbrush kit, polyester microparticles (MPs) could be evenly sprayed onto solid media, enabling rapid detection of extracellular depolymerizing activity via clearing zone halos. This technique was effective in screening both isolated microbial cultures and natural environmental samples, demonstrating its versatility. The method was successfully applied across multiple environments, ranking the biodegradability of six polyesters, from most to least biodegradable: polycaprolactone (PCL), poly[(R)-3-hydroxybutyrate] (PHB), poly(butylene succinate) (PBS), poly(ethylene succinate) (PES), poly(lactic acid) (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). Most notably, it revealed a consistent 1,000-fold higher biodegradation potential in terrestrial compared to marine environments. This approach offers a valuable tool for isolating novel polyester-degrading microbes with significant biotechnological potential, paving the way for improved plastic waste management solutions.