Abstract:The economic losses and the health hazards of the mycotoxins produced by spoilage fungi are the main concerns of the food industry. The spoilage of bakery products by fungi is more common in countries with a high humidity and temperature. About 5-10% of food production is spoiled by the growth of yeast and fungi in food materials. Similarly, in Western Europe, the growth of the spoilage fungi of bread is estimated to reach more than 200 million Euros per year. The history conditions of the food can be a major factor in determining any fungal spoilage-for example, stored and processed foods are more sensitive to spoilage when compared with fresh and prepared foods. Lactic acid bacteria isolated from Bulgarian wheat and rye flour were used in the present study to check their antifungal properties against pathogenic yeast and fungi imperfecta using standard disc diffusion method in vitro. A broad spectrum of antifungal activity of the six newly identified as L. plantarum strains e Ts1, Ts2, Ts3,Ts4 and Ts5, and L. helveticus Ts6 was estimated. Our in vitro studies were performed with wheat and rye sourdough, in order to simulate a real product and to assess the bio-protective potential of the tested lactobacilli. The used test-cultures are representatives of carcinogenic, toxigenic, deteriorative and allergenic fungi from the genera Aspergillus and Penicillium. The all tested strains completely suppress the growth of against C. glabrata 72. Strains L. plantarum Ts1 and Ts3 completely suppress the growth against S. cerevisae. While, in the sample with L. plantarum strains e Ts1, Ts2, Ts3,Ts4 and Ts5, and L. helveticus Ts6 , а retarded and weak growth of A. niger and P. claviforme was observed. However, the spore germination and the colony growth started only on the fifth day of the mould lactobacilli co-cultivation, which also should be considered as a good result. In this study six isolates Ts1,Ts2, Ts3, Ts4, Ts5 and Ts6, from the traditional Bulgarian wheat and rye flour have been identified as L. plantarum and L. helveticus and characterized as cultures with promising antifungal activity. Obtained results from the combined molecular identification (16S rRNA gene sequencing) approach contribute to give new data on the microbial biodiversity of this not well-studied niche. The antifungal activity of our new isolates, identified as L. plantarum and L. helveticus, seems to be a promising advantage of these six strains, suggesting their potential applications in different food technologies. However, more experiments have to be conducted to clarify the nature and the mechanisms of the reported antifungal activity and they are still in progress. The combination of dairy origin and strong inhibitory activity of the lactobacillus strains is a prerequisite for their possible application as starters and/or bioprotective antifungal adjuncts.