Direct synthesis of renewable p-xylene (PX) by cycloaddition of biomass-derived 2,5-dimethylfuran (2,5-DMF) and ethylene was achieved over Al-rich H-beta zeolites synthesized by an organotemplate-free approach and their dealuminated counterparts with different Si/Al ratios. Among them, H-beta zeolite with an Si/Al ratio of 22, obtained from an Al-rich parent by dealumination, was found to be an excellent catalyst for the synthesis of PX. A PX yield of 97 % and 2,5-DMF conversion of 99 % were obtained under optimized conditions. These results are even better than those of a commercial H-beta zeolite prepared using a organotemplate synthesis with a similar Si/Al ratio of 19. The excellent performance of the H-beta zeolite with Si/Al ratio of 22 is closely related to its acidity and porous structure. A moderate Brønsted/Lewis acid ratio can improve the conversion of 2,5-DMF to as high as 99 %. Furthermore, dealuminated H-beta zeolite has a secondary pore system that facilitates product diffusion, which increases the selectivity to PX. In addition, this catalyst shows better regeneration. After five successive regeneration cycles, the yield of PX was still as high as 85 % without obvious dealumination. This work provides a deeper understanding of the more general Diels-Alder cycloaddition of furan-based feedstocks and olefins and significantly improves the potential for the synthesis of chemicals from lignocellulosic biomass.