A porous silicon carbide (SiC) ceramic filter was prepared at 1000°C using waste red mud (RM), SiC, pore‐forming agent, and catalyst. The influence of sintering temperature, RM content, and pore former on the mechanical performance and the porosity of porous ceramics were investigated, and based on the result optimal processing parameters were selected. The air and water permeability tests were carried out at room temperature. The stability of the ceramic filter under thermal shock and chemical treatment was investigated and corroded samples were characterized. The ceramic was prepared using optimized processing parameters obtained with a flexural strength of 65.36 MPa at a porosity of 30.15 vol.% and demonstrated good performance in terms of pure water flux, oil, and turbidity removal efficiency from industrial wastewater. The filtration and permeation results indicated that the SiC filter prepared in this study is suitable for various applications, particularly in the remediation of oil‐polluted water.