The effect of different boron concentrations on the sintering behavior of an Fe-1.5 pct Mo (wt pct) prealloyed powder was investigated. Sintering was carried out in a dilatometer so that all dimensional changes involved with the densification process could be followed. Several transformations were found to occur by heating powder compacts to 1200 ЊC and then cooling them to room temperature. At high temperatures, boron promoted the formation of liquid phases that, through a more-efficient sintering kinetics, promoted a satisfactory densification. Faster heating rates also had beneficial effects on the density of the final products. From a microstructural point of view, boron tended to destabilize the ferritic phase and to form iron and molybdenum borides. These borides can be found both in the intergranular regions, with a typical eutectic morphology, and dispersed in the ferritic matrix, in the form of nanometer-sized precipitates. This feature, having a significant effect on the hardness of the bulk material, has been ascribed to a bainite-like precipitation of borides from an undercooled austenitic phase.