Xylitol dehydrogenase (XDH) is one of the key enzymes in D-xylose metabolism, catalyzing the oxidation of xylitol to D-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing D-xylose as a sole carbon source. An enzyme assay experiment indicated that BSXDH-3 lost apparently all XDH activity. Xylitol production by BSXDH-3 was evaluated using a xylitol fermentation medium with glucose as a cosubstrate. As glucose was found to be an insufficient cosubstrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best cosubstrate. BSXDH-3 produced xylitol with a volumetric productivity of 3.23 g liter ؊1 h ؊1 , a specific productivity of 0.76 g g ؊1 h ؊1 , and a xylitol yield of 98%. This is the first report of gene disruption of C. tropicalis for enhancing the efficiency of xylitol production.